\(b^4+c^4\ge\)\(b^3c+bc^3\) (bn tu cm nhé)
\(\Rightarrow\frac{a}{b^4+c^4+a}\le\frac{a}{bc\left(b^2+c^2\right)+a}=\frac{abc}{b^2c^2\left(b^2+c^2\right)+abc}=\frac{1}{b^2c^2\left(b^2+c^2\right)+1}=\)
\(\frac{a^2b^2c^2}{b^2c^2\left(b^2+c^2\right)+a^2b^2c^2}=\frac{a^2b^2c^2}{b^2c^2\left(a^2+b^2+c^2\right)}=\frac{a^2}{a^2+b^2+c^2}\)
ttu \(T\le\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\) dau = xay ra khi va chi khi a=b=c=1
\(\Sigma\frac{a}{c^4+b^4+a}\le\Sigma\frac{a^2}{abc\left(c^2+b^2\right)+a^2}=1\)
Bài trên quên xử lý dấu = thêm vào nha ( dấu "=" xảy ra khi và chỉ khi a=b=c=1 )
C2: Áp dụng bất đẳng thức Cosi ta có
\(\left(b^4+c^4+a\right)\left(1+1+a^3\right)\ge\left(a^2+b^2+c^2\right)^2\)
\(\Rightarrow\frac{a}{\left(b^4+c^4+a\right)}\le\frac{a\left(a^4+2\right)}{\left(\Sigma a^2\right)^2}\)
Tương tự, rồi cộng lại ta có
\(T\le\Sigma\frac{a^4+2}{\left(\Sigma a^2\right)^2}=\frac{\Sigma a^4+2a}{\left(\Sigma a^2\right)^2}\)(*)
Mặt khác ta lại có
\(\Sigma\frac{1}{a^2}\ge\frac{1}{ab}\)
\(\Leftrightarrow\Sigma a^2b^2\ge\Sigma a\)
\(\Leftrightarrow2\Sigma a^2b^2\ge2\Sigma a\)
\(\Leftrightarrow\Sigma a^4+2\Sigma a^2b^2\ge\Sigma a^4+2\Sigma a\)
\(\Leftrightarrow\frac{\Sigma a^4+2a}{\left(\Sigma a^2\right)^2}\le1\)(**)
từ * và **
\(\Rightarrow T\le1\)
dấu ''='' xảy ra khi \(a=b=c=1\)
vậy \(MaxT=1\Leftrightarrow a=b=c=1\)