Đặt \(\left(a;b;c\right)\rightarrow\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\) thì:
\(\left(-x+y+z\right)\left(x-y+z\right)\left(x+y-z\right)\le xyz\)
Áp dụng BĐT AM-GM:
\(\sqrt{\left(-x+y+z\right)\left(x-y+z\right)}\le\dfrac{-x+y+z+x-y+z}{2}=z\)
Tương tự rồi cho 2 BĐT còn lại cũng có:
\(\sqrt{\left(x-y+z\right)\left(x+y-z\right)}\le x;\sqrt{\left(-x+y+z\right)\left(x+y-z\right)}\le y\)
Nhân theo vế 3 BĐT trên ta có:
\(VT=\left(-x+y+z\right)\left(x-y+z\right)\left(x+y-z\right)\le xyz=VP\)