Lời giải:
Vì \(a+b+c=4;a,b,c>0\Rightarrow 0< a,b,c< 4\)
Ta có:
\(0< a< 4\Rightarrow \sqrt[4]{a}< \sqrt{2}\)
\(\Rightarrow a< \sqrt{2}.\sqrt[4]{a^3}\)
Hoàn toàn tương tự: \(b< \sqrt{2}.\sqrt[4]{b^3}; c< \sqrt{2}.\sqrt[4]{c^3}\)
Cộng theo vế các BĐT vừa thu được ở trên:
\(\Rightarrow a+b+c< \sqrt{2}(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3})\)
\(\Leftrightarrow 4< \sqrt{2}(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3})\)
\(\Leftrightarrow \sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}> 2\sqrt{2}\) (đpcm)