Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

PT

Cho a;b;c là các số dương . Chứng minh rằng: 

       \(\frac{2a^3}{a^6+bc}+\frac{2b^3}{b^6+ca}+\frac{2c^3}{c^6+ab}\le\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\)

H24
8 tháng 12 2017 lúc 23:07

Ta có: \(\frac{2a^3}{a^6+bc}\le\frac{2a^3}{2a^3\sqrt{bc}}=\frac{1}{\sqrt{bc}}\\ \)

CMTT: \(\frac{2b^3}{b^6+ca}\le\frac{1}{\sqrt{ca}}\)

            \(\frac{2c^3}{c^6+ab}\le\frac{1}{\sqrt{ab}}\)

\(\Rightarrow\frac{2a^3}{a^6+bc}+\frac{2b^3}{b^6+ca}+\frac{2c^3}{c^6+ab}\le\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}+\frac{1}{\sqrt{ab}}\)\(=\) \(\frac{\sqrt{bc}}{bc}+\frac{\sqrt{ac}}{ac}+\frac{\sqrt{ab}}{ab}\)

    \(\le\frac{a+c}{2ac}+\frac{b+c}{2bc}+\frac{a+b}{2ab}=\frac{2\left(ab+bc+ca\right)}{2abc}=\frac{ab+bc+ca}{abc}\)    \(\le\frac{a^2+b^2+c^2}{abc}=\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\left(đpcm\right)\)

      Dấu bằng xảy ra khi : a = b = c =1

Bình luận (0)
CD
8 tháng 12 2017 lúc 20:23

cái này là cái what j ko hiểu BÓ TAY CHẤM COM

Bình luận (0)

Các câu hỏi tương tự
KB
Xem chi tiết
H24
Xem chi tiết
ZZ
Xem chi tiết
TQ
Xem chi tiết
LC
Xem chi tiết
M
Xem chi tiết
TM
Xem chi tiết
SL
Xem chi tiết
CD
Xem chi tiết