Bài 5. ÔN TẬP CUỐI NĂM

HH

Cho a,b,c là các số dương, chứng minh bất đẳng thức:

\(\frac{a^3}{b^3}+\frac{b^3}{c^3}+\frac{c^3}{a^3}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)

NL
9 tháng 6 2020 lúc 21:46

\(\frac{a^3}{b^3}+1+1\ge\frac{3a}{b}\) ; \(\frac{b^3}{c^3}+1+1\ge\frac{3b}{c}\) ; \(\frac{c^3}{a^3}+1+1\ge\frac{3c}{a}\)

Cộng vế với vế:

\(\frac{a^3}{b^3}+\frac{b^3}{c^3}+\frac{c^3}{a^3}+6\ge\frac{3a}{b}+\frac{3b}{c}+\frac{3c}{a}\)

\(\Leftrightarrow\frac{a^3}{b^3}+\frac{b^3}{c^3}+\frac{c^3}{a^3}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-6\)

\(\Rightarrow\frac{a^3}{b^3}+\frac{b^3}{c^3}+\frac{c^3}{a^3}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+2.3\sqrt[3]{\frac{abc}{bca}}-6=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

Bình luận (0)

Các câu hỏi tương tự
CT
Xem chi tiết
CD
Xem chi tiết
CD
Xem chi tiết
NC
Xem chi tiết
HN
Xem chi tiết
NC
Xem chi tiết
DN
Xem chi tiết
CD
Xem chi tiết
TQ
Xem chi tiết