làm lại dong cuối:\(A\ge\frac{2}{c}+\frac{4}{b}+\frac{6}{a}\)
Mà:\(2c+b=abc\Rightarrow a=\frac{2c+b}{cb}=\frac{2}{b}+\frac{1}{c}\)
\(\Rightarrow2a=\frac{4}{b}+\frac{2}{c}\)
\(\Rightarrow A\ge2a+\frac{6}{a}\)
Ta có:\(A=\left(\frac{1}{b+c-a}+\frac{1}{a+c-b}\right)+2\left(\frac{1}{b+c-a}+\frac{1}{a+b-c}\right)\)
\(+3\left(\frac{1}{a+c-b}+\frac{1}{a+b-c}\right)\)
\(\ge\frac{2}{c}+\frac{4}{b}+\frac{6}{c}\) (Do a,b,c là 3 cạnh của tam giác nên:\(\hept{\begin{cases}a+b-c>0\\a+c-b>0\\c+b-a>0\end{cases}}\)
\(=\frac{6}{a}+2a\ge4\sqrt{3}\left(cosi\right)\left(a>0\right)\)
Dấu = xảy ra khi:
\(a=b=c=\sqrt{3}\)
xin lỗi các bạn đáp án là\(2\sqrt{3}\)