NC

Cho a,b,c là 3 cạnh 1 tam giác. CMR: \(\frac{a^2}{b+c-a}+\frac{b^2}{a+c-b}+\frac{c^2}{a+b-c}\ge3\)

TL
10 tháng 4 2020 lúc 14:40

Đặt \(\hept{\begin{cases}b+c-a=x\\a+c-b=y\\a+b-c=z\end{cases}}\)

vì a,b, c là độ dài 3 cạnh của 1 tam giác => \(\hept{\begin{cases}b+c>a\\c+a>b\\a+b>c\end{cases}}\Leftrightarrow\hept{\begin{cases}b+c-a>0\\c+a-b>0\\a+b-c>0\end{cases}\Rightarrow x,y,z>0}\)

và \(\hept{\begin{cases}2c=x+y\\2a=y+z\\2b=x+z\end{cases}\Rightarrow\hept{\begin{cases}c=\frac{x+y}{2}\\a=\frac{y+z}{2}\\b=\frac{x+z}{2}\end{cases}}\Rightarrow\frac{a}{b+c-a}=\frac{\frac{y+z}{2}}{x}=\frac{y+z}{2x}}\)

Tương tự: \(\hept{\begin{cases}\frac{b}{c+a-b}=\frac{x+z}{2y}\\\frac{c}{a+b-c}=\frac{x+y}{2z}\end{cases}}\)

\(\Rightarrow\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c}=\frac{y+z}{2x}+\frac{x+z}{2y}+\frac{x+y}{2z}\)

\(=\frac{1}{2}\left(\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}\right)\)

\(=\frac{1}{2}\left(\frac{y}{z}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}\right)\)

\(=\frac{1}{2}\left[\left(\frac{y}{x}+\frac{x}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)\right]\ge\frac{1}{2}\left(2+2+2\right)\) vì \(\hept{\begin{cases}\frac{y}{x}+\frac{x}{y}\ge2\\\frac{z}{x}+\frac{x}{z}\ge2\\\frac{y}{z}+\frac{z}{y}\ge2\end{cases}}\)

Dấu "=" khi và chỉ khi \(\hept{\begin{cases}\frac{y}{x}=\frac{x}{y}\\\frac{z}{x}=\frac{x}{z}\\\frac{y}{z}=\frac{z}{y}\end{cases}}\) và x,y,z>0

<=> x=y=z

=> a+b-c=c+a-b = a+b-c

<=> a+b+c-2a=a+b+c-2b=a+c+c-2c

<=> a=b=c

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NX
Xem chi tiết
EC
Xem chi tiết
H24
Xem chi tiết
PT
Xem chi tiết
NA
Xem chi tiết
MT
Xem chi tiết
NM
Xem chi tiết
TB
Xem chi tiết
LH
Xem chi tiết