NQ

Cho ∆ABC có AB = AC và AC > BC. Gọi H là trung điểm cạnh BC.
a) Chứng minh: ∆ABH = ∆ACH và AH là tia phân giác góc BAC.
b) Trên tia đối của tia HA lấy điểm M sao cho HA = HM. Chứng minh AB // MC.
c) Từ B vẽ đường thẳng vuông góc với AC tại K, trên tia đối của tia KC lấy điểm D sao cho KD =
KC. Chứng minh tia BK là tia phân giác của góc DBC
 

NT
3 tháng 1 2022 lúc 14:04

a: Xét ΔABH và ΔACH có 

AB=AC

AH chung

HB=HC

Do đó: ΔABH=ΔACH

Ta có: ΔABC cân tại A

mà AH là đường trung tuyến

nên AH là đường phân giác

b: Xét tứ giác ABMC có 

H là trung điểm của AM

H là trung điểm của BC

Do đó: ABMC là hình bình hành

Suy ra: AB//MC

c: Ta có: ΔBCD cân tại B

mà BK là đường cao

nên BK là đường phân giác

Bình luận (1)

Các câu hỏi tương tự
NQ
Xem chi tiết
TH
Xem chi tiết
LK
Xem chi tiết
DK
Xem chi tiết
TA
Xem chi tiết
NV
Xem chi tiết
NT
Xem chi tiết
HG
Xem chi tiết
VN
Xem chi tiết