\(BD+CD=BC=10\Rightarrow CD=10-BD\)
Theo định lý phân giác:
\(\dfrac{BD}{AB}=\dfrac{CD}{AC}\Rightarrow\dfrac{BD}{6}=\dfrac{10-BD}{9}\Rightarrow15BD=60\Rightarrow BD=4\)
\(\Rightarrow CD=10-BD=6\)
\(EC=EB+BC=EB+10\)
Theo định lý phân giác:
\(\dfrac{EB}{AB}=\dfrac{EC}{AC}\Rightarrow\dfrac{EB}{6}=\dfrac{EB+10}{9}\Rightarrow3EB=60\Rightarrow EB=20\)
-Xét △ABC có: AD là đường phân giác trong (gt).
\(\Rightarrow\)\(\dfrac{BD}{DC}=\dfrac{AB}{AC}\) (định lí đường phân giác trong tam giác).
\(\Rightarrow\dfrac{BD}{AB}=\dfrac{DC}{AC}=\dfrac{BD+DC}{AB+AC}=\dfrac{BC}{AB+AC}\)
\(\Rightarrow BD=\dfrac{AB.BC}{AB+AC}=\dfrac{6.10}{6+9}=4\left(cm\right)\)
\(DC=BC-BD=10-4=6\left(cm\right)\).
-Xét △ABC có: AE là đường phân giác ngoài (gt).
\(\Rightarrow\dfrac{EB}{EC}=\dfrac{AB}{AC}\)(định lí đường phân giác trong tam giác).
\(\Rightarrow\dfrac{EB}{AB}=\dfrac{EC}{AC}=\dfrac{EC-EB}{AC-AB}=\dfrac{BC}{AC-AB}\)
\(\Rightarrow EB=\dfrac{AB.BC}{AC-AB}=\dfrac{6.10}{9-6}=20\left(cm\right)\)
\(EC=BC+EB=10+20=30\left(cm\right)\)