hình như là DF \(\perp\) DC mới đúng Nguyễn Thuỳ Dương
hình như là DF \(\perp\) DC mới đúng Nguyễn Thuỳ Dương
Cho Δ ABC cân tại A. Vẽ các tia phân giác BE, CF của góc B và góc C ( E∈ AC, F ∈ AB )
a, C/m BE = CF
b, Gọi D là giao điểm của BE và CF. C/m AD là tia phân giác của góc BAC và c/m AD ⊥ BC
c, Kẻ DM ⊥ AB, DN ⊥ AC, DK ⊥ BC. C/m DM = DN = DK
M.n giúp em với
Cho tam giác ABC cân tại A (góc A< 90 độ). Vẽ tia phân giác CD của góc C (D thuộc AB). Qua D vẽ DF vuông góc với D (F thuộc AC). Vẽ DE song song với BC (E thuộc AC). Gọi I là giao điểm của tia phân giác của góc BAC với DE. a)CM: E là trung điểm của FC. b) CM: FC=4IC
Cho tam giác abc cân tại a trên cạnh BC lấy điểm M trên tia đối của tia CB lấy điểm N sao cho BM=CM, các đường thẳng vuông góc với BC kẻ từ M và N cắt AB và AC lần lượt tại D và E, đương thẳng DE cắt BC tại I. Gọi O là giao điểm của đường phân giác góc A với đường thẳng vuông góc với AC tại C. CMR: a, DM=EN b, I là trung điểm của DE c,Tam giác BAC=Tam giác COE d, OI vuông góc với DE
Cho tam giác ABC vuông tại B ,Vẽ AD là tia phân giác góc BAC (D thuộc BC).Từ D kẻ De vuông góc AC (E thuộc AC).Gọi F là giao điểm của tia DE và AB .a)Chứng minh :tam giác ABE là tam giác cân.b)Tam giác ADF=Tam giác ADC.c) Chứng minh BA+BC>DE+AC
Cho DABC vuông tại A có AB=3 cm , BC= 5cm
a/ Tính AC?
b/ Gọi BD là tia phân giác của góc B,vẽ DM vuông góc với BC tại M.
Chứng minh ∆ABD = ∆MBD.
c/ So sánh DA và DC?
d/ Gọi I là giao điểm của BA và MD. Chứng minh ∆DIC cân.
Cho tam giác ABC vuông tại A. Gọi D là điểm thuộc cạnh BC sao cho BD = BA và H là trung điểm của AD. Tia BH cắt AC tại E. Tia DE cắt tia BA tại M.
a) qua điểm E kẻ đường thẳng song song với BC cắt AC tại F . Gọi K là giao điểm của DE và HF . Chứng minh rằng KE = 2KD
Cho tam giác ABC vuông tại A và AB<AC . Trên cạnh BC lấy điểm E sao cho BE = BA , kẻ BD là tia phân giác của góc ABC (D thuộc AC)
a) Chứng minh : ΔABD = ΔEBD
b) Chứng minh : DE vuông góc với BC
c) Gọi K là giao điểm của BA và ED . Chứng minh : BK=BC