LT

cho a>b>c. Biết 2a+2b=5ab .Tính Q =\(\dfrac{a+b}{a-b}\)

H24
25 tháng 9 2021 lúc 8:12

Kham khảo bài lm này nhé:

Bình luận (2)
NM
25 tháng 9 2021 lúc 8:13

\(2a^2+2b^2=5ab\\ \Leftrightarrow2a^2-5ab+2b^2=0\\ \Leftrightarrow2a^2-4ab-ab+2b^2=0\\ \Leftrightarrow2a\left(a-2b\right)+b\left(a-2b\right)=0\\ \Leftrightarrow\left(2a+b\right)\left(a-2b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=-\dfrac{b}{2}\\a=2b\end{matrix}\right.\)

Với \(a=-\dfrac{b}{2}\Leftrightarrow Q=\dfrac{-\dfrac{b}{2}+b}{-\dfrac{b}{2}-b}=\dfrac{b}{2}:\dfrac{-3b}{2}=\dfrac{b}{-3b}=-\dfrac{1}{3}\)

Với \(a=2b\Leftrightarrow Q=\dfrac{3b}{b}=3\)

Bình luận (0)
LL
25 tháng 9 2021 lúc 8:13

\(2a^2+2b^2=5ab\)

\(\Leftrightarrow\left(2a^2-4ab\right)+\left(2b^2-ab\right)=0\)

\(\Leftrightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)

\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\b=2a\end{matrix}\right.\)

TH1: a=2b

\(Q=\dfrac{a+b}{a-b}=\dfrac{2b+b}{2b-b}=\dfrac{3b}{b}=3\)

TH2: b=2a

\(Q=\dfrac{a+b}{a-b}=\dfrac{a+2a}{a-2a}=\dfrac{3a}{-a}=-3\)

Bình luận (0)

Các câu hỏi tương tự
CD
Xem chi tiết
NT
Xem chi tiết
DN
Xem chi tiết
0A
Xem chi tiết
PA
Xem chi tiết
GV
Xem chi tiết
H24
Xem chi tiết
TA
Xem chi tiết
NT
Xem chi tiết