Chương III - Hệ hai phương trình bậc nhất hai ẩn

VC

cho a,b,c >0, thỏa mãn a+b+c+d=1. chứng minh rằng \(\dfrac{1+\sqrt{a}}{1-a}+\dfrac{1+\sqrt{b}}{1-b}+\dfrac{1+\sqrt{c}}{1-c}+\dfrac{1+\sqrt{d}}{1-d}>=8\)

LF
8 tháng 8 2017 lúc 11:09

Ta có BĐT phụ \(\dfrac{1+\sqrt{a}}{1-a}\ge4a+1\)

\(\Leftrightarrow-\dfrac{\sqrt{a}\left(2\sqrt{a}-1\right)^2}{\sqrt{a}-1}\ge0\forall\dfrac{1}{4}< a< 0\)

Tương tự cho 3 BĐT còn lại ta cũng có:

\(\dfrac{1+\sqrt{b}}{1-b}\ge4b+1;\dfrac{1+\sqrt{c}}{1-c}\ge4c+1;\dfrac{1+\sqrt{d}}{1-d}\ge4d+1\)

Cộng theo vế 4 BĐT trên ta có:

\(VT\ge4\left(a+b+c+d\right)+4=8=VP\)

Xảy ra khi \(a=b=c=d=\dfrac{1}{4}\)

Bình luận (0)
ND
8 tháng 8 2017 lúc 11:15

Ta cần chứng minh :

\(\dfrac{1+\sqrt{a}}{1-a}\ge4a+1\) \(\forall a\in\left(0;\dfrac{1}{4}\right)\)

\(\Leftrightarrow1+\sqrt{a}\ge\left(4a+1\right)\left(1-a\right)\)

\(\Leftrightarrow1+\sqrt{a}\ge4a-4a^2+1-a\)

\(\Leftrightarrow4a^2-4a-1+a+1+\sqrt{a}\ge0\)

\(\Leftrightarrow4a^2-3a+\sqrt{a}\ge0\)

\(\Leftrightarrow\left(4a^2-a\right)-\left(2a-\sqrt{a}\right)\ge0\)

\(\Leftrightarrow\left(2a-\sqrt{a}\right)\left(2a+\sqrt{a}\right)-\left(2a-\sqrt{a}\right)\ge0\)

\(\Leftrightarrow\left(2a-\sqrt{a}\right)\left(2a+\sqrt{a}-1\right)\ge0\)

Ta có: \(2a-\sqrt{a}=\left(\sqrt{2a}-\dfrac{\sqrt{2}}{4}\right)^2-\dfrac{1}{8}\ge0\) \(\forall a\in\left(0;\dfrac{1}{4}\right)\)

\(\left(2a+\sqrt{a}-1\right)=\left(\sqrt{2a}+\dfrac{\sqrt{2}}{4}\right)^2-\dfrac{9}{8}\ge0\)

\(\forall a\in\left(0;\dfrac{1}{4}\right)\)

Vậy: \(\dfrac{1+\sqrt{a}}{1-a}\ge4a+1\) \(\forall a\in\left(0;\dfrac{1}{4}\right)\)

Tương tự: \(\dfrac{1+\sqrt{b}}{1-b}\ge4b+1\forall b\in\left(0;1\right)\)

\(\dfrac{1+\sqrt{c}}{1-c}\ge4c+1\forall c\in\left(0;\dfrac{1}{4}\right)\)

\(\dfrac{1+\sqrt{d}}{1-d}\ge4d+1\forall d\in\left(0;\dfrac{1}{4}\right)\)

Cộng các BĐT vừa chứng minh, ta được:

\(\dfrac{1+\sqrt{a}}{1-a}+\dfrac{1+\sqrt{b}}{1-b}+\dfrac{1+\sqrt{c}}{1-c}+\dfrac{1+\sqrt{d}}{1-d}\ge4\left(a+b+c+d\right)+4=8\)

Vậy: Ta suy ra được điều phải chứng minh

Bình luận (1)

Các câu hỏi tương tự
TT
Xem chi tiết
TL
Xem chi tiết
H24
Xem chi tiết
WR
Xem chi tiết
LT
Xem chi tiết
NV
Xem chi tiết
EC
Xem chi tiết
NV
Xem chi tiết
LM
Xem chi tiết