Chương III - Hệ hai phương trình bậc nhất hai ẩn

H24

Cho a,b,c > 0 thỏa mãn \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=1\). Tìm giá trị nhỏ nhất của biểu thức:

\(P=\dfrac{\sqrt{a^2-ab+b^2}}{\sqrt{ab+1}}+\dfrac{\sqrt{b^2-bc+c^2}}{\sqrt{bc+1}}+\dfrac{\sqrt{c^2-ca+a^2}}{\sqrt{ca+1}}\)

Ace Legona giải giúp e vs

LF
22 tháng 6 2017 lúc 22:46

máy lag + mệt = nản, vô đây tham khảo HERE

Bình luận (0)
H24
22 tháng 6 2017 lúc 23:25

ta có :\(a^2-ab+b^2=\left(a+b\right)^2-3ab\ge\left(a+b\right)^2-\dfrac{3}{4}\left(a+b\right)^2=\dfrac{1}{4}\left(a+b\right)^2\)(theo BĐT AM-GM)

\(\Rightarrow P\ge\sum\dfrac{a+b}{2\sqrt{ab+1}}\)

ÁP dụng BĐT AM-GM:

\(\dfrac{a+b}{2\sqrt{ab+1}}+\dfrac{b+c}{2\sqrt{bc+1}}+\dfrac{c+a}{2\sqrt{ca+1}}\ge3\sqrt[3]{\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8\sqrt{\left(ab+1\right)\left(bc+1\right)\left(ca+1\right)}}}=\dfrac{3}{2}.\dfrac{1}{\sqrt[3]{\sqrt{\left(ab+1\right)\left(bc+1\right)\left(ca+1\right)}}}\)

\(\sqrt[3]{\left(ab+1\right)\left(bc+1\right)\left(ca+1\right)}\le\dfrac{1}{3}\left(ab+bc+ca+3\right)\)

\(\Rightarrow P\ge\dfrac{3\sqrt{3}}{2\sqrt{\left(ab+bc+ca+3\right)}}\)(*)

ta liên tưởng đến BĐT phụ:\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge\dfrac{8}{9}\left(x+y+z\right)\left(xy+yz+xz\right)\)

Cm: phân tích :\(VT=xy\left(x+y\right)+yz\left(y+z\right)+zx\left(x+z\right)+2xyz\)

\(=xy\left(x+y\right)+yz\left(y+z\right)+xz\left(z+x\right)+3xyz-xyz\)

\(=\left(x+y+z\right)\left(xy+yz+xz\right)-xyz\)

\(\left(x+y+z\right)\left(xy+yz+xz\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{x^2y^2z^2}=9xyz\)

nên \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge\left(x+y+z\right)\left(xy+yz+xz\right)-\dfrac{1}{9}\left(x+y+z\right)\left(xy+yz+xz\right)=\dfrac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\)

Áp dụng:

\(1=\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\dfrac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)

mặt khác,theo AM-GM,dễ dàng chứng minh được \(a+b+c\ge\dfrac{3}{2}\)

nên \(1\ge\dfrac{8}{9}.\dfrac{3}{2}\left(ab+bc+ca\right)\Leftrightarrow ab+bc+ca\le\dfrac{3}{4}\)

từ (*)\(\Rightarrow P\ge\dfrac{3\sqrt{3}}{2\sqrt{\dfrac{3}{4}+3}}=\dfrac{3}{\sqrt{5}}\)

Dấu = xảy ra khi \(a=b=c=\dfrac{1}{2}\)

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
VT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
TT
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết
LM
Xem chi tiết
H24
Xem chi tiết