Chương III - Hệ hai phương trình bậc nhất hai ẩn

LM

Chứng minh rằng:

\(\dfrac{a+b}{\sqrt{a\left(3a+b\right)+\sqrt{b\left(3b+a\right)}}}\ge\dfrac{1}{2}\) với a,b dương

AH
31 tháng 1 2018 lúc 16:12

Lời giải:

Sử dụng PP khai triển :

\(\frac{a+b}{\sqrt{a(3a+b)+b(3b+a)}}\geq \frac{1}{2}\)

\(\Leftrightarrow \frac{(a+b)^2}{a(3a+b)+b(3b+a)}\geq \frac{1}{4}\)

\(\Leftrightarrow 4(a+b)^2\geq a(3a+b)+b(3b+a)\)

\(\Leftrightarrow a^2+b^2+6ab\geq 0\)

\(\Leftrightarrow (a+b)^2+4ab\geq 0\). Điều này luôn đúng với \(a,b\geq 0\) tuy nhiên dấu bằng không xảy ra do \(a,b\neq 0\)

Do đó: \(\frac{a+b}{\sqrt{a(3a+b)+b(3b+a)}}> \frac{1}{2}\)

Bình luận (0)
TT
31 tháng 1 2018 lúc 17:31

mk nghĩ đề bài như này ms đúng chứ

\(\dfrac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\dfrac{1}{2}\)

vs a,b>0

cm \(vt=\dfrac{2\left(a+b\right)}{\sqrt{4a\left(3a+b\right)}+\sqrt{4b\left(3b+a\right)}}\)

\(\ge\dfrac{2\left(a+b\right)}{\dfrac{4a+3a+b}{2}+\dfrac{4b+3b+a}{2}}=\dfrac{2\left(a+b\right)}{\dfrac{8\left(a+b\right)}{2}}=\dfrac{1}{2}\)(dpcm)

dau = xay ra khi a=b>0

Bình luận (1)

Các câu hỏi tương tự
TT
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
NM
Xem chi tiết
DN
Xem chi tiết
VT
Xem chi tiết
IM
Xem chi tiết
H24
Xem chi tiết
DN
Xem chi tiết