Bài 1: Lũy thừa

NP

Cho a;b;c >=0 thỏa mãn \(a^2+b^2+c^2=3\)

\(CMR:\dfrac{a}{b+2}+\dfrac{b}{c+2}+\dfrac{c}{a+2}\le1\)

NL
29 tháng 3 2022 lúc 18:31

\(\Leftrightarrow a\left(a+2\right)\left(c+2\right)+b\left(a+2\right)\left(c+2\right)+c\left(b+2\right)\left(c+2\right)\le\left(a+2\right)\left(b+2\right)\left(c+2\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)+ab^2+bc^2+ca^2\le8+abc\)

\(\Leftrightarrow ab^2+bc^2+ca^2\le2+abc\)

Không mất tính tổng quát, giả sử \(b=mid\left\{a;b;c\right\}\)

\(\Rightarrow\left(a-b\right)\left(b-c\right)\ge0\)

\(\Leftrightarrow ab+bc\ge b^2+ac\)

\(\Leftrightarrow ab^2+ca^2\le a^2b+abc\)

\(\Rightarrow ab^2+bc^2+ca^2\le bc^2+a^2b+abc=b\left(a^2+c^2\right)+abc=b\left(2-b^2\right)+abc\)

\(=2+abc-\left(b-1\right)^2\left(b+2\right)\le2+abc\) (đpcm)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
SK
Xem chi tiết
NV
Xem chi tiết
HL
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết