PH

Cho a;b;c > 0 thỏa mãn a + b + c = 3

Tìm GTLN của \(D=\frac{ab}{\sqrt{c^2+3}}+\frac{bc}{\sqrt{a^2+3}}+\frac{ca}{\sqrt{b^2+3}}\)

H24
18 tháng 2 2020 lúc 8:03

Có: \(9=\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Rightarrow3\ge ab+bc+ca\)

Từ đây: \(D=\Sigma_{cyc}\frac{ab}{\sqrt{c^2+3}}\le\Sigma_{cyc}\frac{ab}{\sqrt{c^2+ab+bc+ca}}\)

\(=\Sigma_{cyc}\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}=\Sigma_{cyc}\sqrt{\frac{ab}{a+c}}.\sqrt{\frac{ab}{b+c}}\le\Sigma_{cyc}\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)

\(=\frac{1}{2}\left(a+b+c\right)=\frac{3}{2}\)

Đẳng thức xảy ra khi a = b = c = 1

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
IU
Xem chi tiết
PD
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
PT
Xem chi tiết