Cho a,b,c là các số dương cmr:
\(\frac{ab}{a+b+2c}+\frac{bc}{b+c+2a}+\frac{ca}{c+a+2b}\le\frac{a+b+c}{4}\)
1) Cho a,b,c>0 tm a+b+c=3. Cmr \(\frac{1}{2+a^2+b^2}+\frac{1}{2+b^2+c^2}+\frac{1}{2+c^2+a^2}\le\frac{3}{4}\)
2) Cho a,b,c>0 tm \(a^2+b^2+c^2\le abc\).Cmr \(\frac{a}{a^2+bc}+\frac{b}{b^2+ca}+\frac{c}{c^2+ab}\le\frac{1}{2}\)
3) Cho a,b,c>0 tm \(\sqrt{a}+\sqrt{b}+\sqrt{c}=1\).Cmr \(\sqrt{\frac{ab}{a+b+2c}}+\sqrt{\frac{bc}{b+c+2a}}+\sqrt{\frac{ca}{c+a+2b}}\le\frac{1}{2}\)
Giúp mình mới nhé các bạn. Mình đang cần gấp
Cho \(a;b;c>0\)Chứng minh \(\frac{ab}{2a+b}+\frac{bc}{2b+c}+\frac{ca}{2c+a}\le\frac{abc}{3}\)
Cho a;b;c là các số dương . Chứng minh rằng:
\(\frac{2a^3}{a^6+bc}+\frac{2b^3}{b^6+ca}+\frac{2c^3}{c^6+ab}\le\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\)
cho a;b;c là các số thực duong.CMR:
\(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\le\frac{a+b+c}{6}\)
Cho a;b;c là các số thực không âm thỏa mãn \(a^2+b^2+c^2>0\)\(.CMR:\)
\(\frac{3a^2-bc}{2a^2+b^2+c^2}+\frac{3b^2-ca}{+2b^2+c^2+a^2}+\frac{3c^2-ab}{2c^2+a^2+b^2}\le\frac{3}{2}\)
a,b,c thuộc R+ . chứng minh rằng:
\(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\le\frac{a+b+c}{6}\)
cho các số a,b,c thoả mãn a+b+c+ab+bc+ca+abc=0
tính P=\(\frac{1}{3+2a+b+ab}+\frac{1}{3+2b+c+bc}+\frac{1}{3+2c+a+ca}\)
1. Cho 3 số dương a, b, c thỏa mãn ab + bc + ca = 3abc
Tính GTNN của bt : \(M=\frac{2\left(a^2b^2+b^2c^2+c^2a^2\right)+abc}{a^2b^2c^2}\)
2. Cho a, b, c\(\inℝ^+\)thỏa mãn a + b + c = 4. Cmr BĐT sau luôn đúng :
\(10\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\ge\frac{4+5a}{4-a}+\frac{4+5b}{4-b}+\frac{4+5c}{4-c}\)