Chương I - Căn bậc hai. Căn bậc ba

LY

Cho a,b,c >0, a+b+c=3

Chứng minh: N =(3+a2/b+c) + (3+b2/c+a)+ (3+ c2/a+b) lớn hơn hoặc bằng 6

NL
10 tháng 6 2019 lúc 23:37

\(N=\frac{3+a^2}{3-a}+\frac{3+b^2}{3-b}+\frac{3+c^2}{3-c}\)

Ta chứng minh \(\frac{3+a^2}{3-a}\ge2a\) với mọi \(0< a< 3\), thật vậy:

\(\Leftrightarrow3+a^2-2a\left(3-a\right)\ge0\)

\(\Leftrightarrow3\left(a-1\right)^2\ge0\) (luôn đúng)

Tương tự ta có: \(\frac{3+b^2}{3-b}\ge2b\); \(\frac{3+c^2}{3-c}\ge2c\)

Cộng vế với vế: \(\Leftrightarrow N\ge2\left(a+b+c\right)=6\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)

Các câu hỏi tương tự
LY
Xem chi tiết
LY
Xem chi tiết
LY
Xem chi tiết
LK
Xem chi tiết
EC
Xem chi tiết
NC
Xem chi tiết
NC
Xem chi tiết
HD
Xem chi tiết
DL
Xem chi tiết