Chương I - Căn bậc hai. Căn bậc ba

NC

Chứng minh rằng: Nếu a , b, c > 0 thì : \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{b+a}\ge\dfrac{3}{2}\)

UK
13 tháng 8 2017 lúc 10:47

Đặt b+c=x;c+a=y;a+b=z

Áp dụng BĐT \(\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge9\), ta được

\(2\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{a+c}+\dfrac{1}{a+b}\right)\ge9\)

\(\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{a+c}+\dfrac{1}{a+b}\right)\ge4,5\)

\(\)\(\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{a+c}+\dfrac{a+b+c}{a+b}\ge4,5\)

\(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}+1+1+1\ge4,5\)

\(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\ge1,5\)

Đẳng thức xảy ra khi và chỉ khi a=b=c

Bình luận (0)

Các câu hỏi tương tự
NC
Xem chi tiết
NC
Xem chi tiết
TL
Xem chi tiết
VT
Xem chi tiết
ZZ
Xem chi tiết
QD
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
HB
Xem chi tiết