Từ \(a^2-6b^2=-ab\Rightarrow a^2-6b^2+ab=0\)
\(\Rightarrow a^2+3ab-2ab-6b^2=0\)
\(\Rightarrow a\left(a+3b\right)-2b\left(a+3b\right)=0\)
\(\Rightarrow\left(a+3b\right)\left(a-2b\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a+3b=0\\a-2b=0\end{cases}}\Rightarrow\orbr{\begin{cases}a=-3b\\a=2b\end{cases}}\)
Xét \(a=-3b\) thay vào M ta có:\(M=\frac{2\cdot3\left(-b\right)\cdot b}{2\left(-3b\right)^2-3b^2}=\frac{-6b^2}{15b^2}=-\frac{2}{5}\)
Xét \(a=2b\) thay vào M ta có:\(M=\frac{2\cdot2b\cdot b}{2\cdot\left(2b\right)^2-3b^2}=\frac{4b^2}{8b^2-3b^2}=\frac{4b^2}{5b^2}=\frac{4}{5}\)