Cho a;b;c>0 . Tìm GTNN
\(A=a\left(\frac{a}{2}+\frac{1}{bc}\right)+b\left(\frac{b}{2}+\frac{1}{ca}\right)+c\left(\frac{c}{2}+\frac{1}{ab}\right)\)
cho 3 so duong a;b;c thoa man a+b+c=1.tim GTNN cua:
\(p=\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2+\left(c+\frac{1}{c}\right)^2\)
1. Cho a + b + c = 9 và a,b,c là các số dương. Tìm GTNN của P = \(\left(a^2+\frac{1}{a^2}\right)\left(b^2+\frac{1}{b^2}\right)\left(c^2+\frac{1}{c^2}\right)\)
2. Cho a,b,c > 0 thõa mãn: a + b + c = 1. Tìm GTNN của Q = \(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\)
Cho các số a,b,c thỏa mãn 0<a,b,c<1 và ab+bc+ca=1 tìm gtnn của \(P=\frac{a^{^2}.\left(1-2b\right)}{b}+\frac{b.^2.\left(1-2c\right)}{c}+\frac{c^2.\left(1-2a\right)}{a}^{ }\)
Cho a,b,c>0 thỏa mãn \(a+b+c\le\frac{3}{2}\)Tìm GTNN: \(P=\left(3+\frac{1}{a}+\frac{1}{b}\right)\left(3+\frac{1}{b}+\frac{1}{c}\right)\left(3+\frac{1}{c}+\frac{1}{a}\right)\)
Cho a,b,c>0, a+b+c=1. Tìm GTNN của \(P=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2\)
1. Cho a, b, c > 0. Cmr
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
2. Cho các số dương a,b thỏa mãn \(\frac{1}{3}\left(a^3+b^3+a+b\right)+ab\le a^2+b^2+1\)
Tính GTNN của biểu thức \(M=\frac{a^2+8}{a}+\frac{b^2+2}{b}\)
Cho ab=1 và a+b≠0. Tính
\(P=\frac{1}{\left(a+b\right)^3}\left(\frac{1}{a^3}+\frac{1}{b^3}\right)+\frac{3}{\left(a+b\right)^4}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)+\frac{6}{\left(a+b\right)^5}\left(\frac{1}{a}+\frac{1}{b}\right)\)
Cho a,b >0 tm 4a^2+b^2+ab=1
Tìm min của P=\(\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{1}{a}-\frac{1}{b}\right)^2:\left[\frac{a^2}{b^2}+\frac{b^2}{a^2}\left(\frac{a}{b}+\frac{b}{a}\right)\right]\)