1) \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=y-\dfrac{1}{y}\\2y=x^3+1\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}\sqrt{x^2+y^2}+\sqrt{2xy}=8\sqrt{2}\\\sqrt{x}+\sqrt{y}=4\end{matrix}\right.\)
3) \(\left\{{}\begin{matrix}\sqrt{x^3+3}+\left|y\right|=\sqrt{3}\\\sqrt{y^2+5}+\left|x\right|=\sqrt{x^2+5}\end{matrix}\right.\)
Giải hpt:
1, \(\left\{{}\begin{matrix}x^2+y+x^3y+x^2y+xy=\frac{-5}{4}\\x^4+y^2+xy\left(1+2x\right)=\frac{-5}{4}\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^4+2x^2y+x^2y^2=-2x+9\\x^2+2xy=6x+6\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}x-\frac{1}{x}=y-\frac{1}{y}\\2y=x^3+1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}17\left(x-y\right)=3xy-2x^2-y^2\\\sqrt{x+3}+\sqrt{10-y}=x^2-7y+11\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2+y+x^3y+xy^2+xy=-\dfrac{5}{4}\\x^4+y+xy\left(1+2x\right)=-\dfrac{5}{4}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x+y\right)\left(x+1\right)\left(y+1\right)=8\\7y^2+6xy\left(x+2y\right)=25\end{matrix}\right.\)
Giai hệ phương trình : \(\left\{{}\begin{matrix}y^2+\sqrt{3y^2-2x+3}=\dfrac{2x}{3}+5\\3x-2y=5\end{matrix}\right.\)
Tìm m để phương trình \(\left\{{}\begin{matrix}x^2+y^2=4\\x-y^2=m\end{matrix}\right.\) có nghiệm
giải hệ PT: \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{matrix}\right.\)
Cho hệ phương trình: \(\left\{{}\begin{matrix}x+y=m+1\\x^2y+xy^2=2m^2-m-3\end{matrix}\right.\)
Tìm m để hệ có nghiệm \(x_0,y_0\) mà
a) \(x_0.y_o\)đạt GTNN
b) \(x_0.y_0\)đạt GTLN