HT

cho a,b là số dương thỏa mãn a+b=4

tìm gtnn của A=\(\dfrac{a^2}{a+4}+\dfrac{b^2}{b+4}\)

MỌI NGỜI ƠI EM VẦN RẤT GẤP Ạ

AT
30 tháng 7 2021 lúc 20:06

Ta có: \(A=\dfrac{a^2}{a+4}+\dfrac{b^2}{b+4}\ge\dfrac{\left(a+b\right)^2}{a+b+8}\) (BĐT Cauchy-Schwarz)

\(=\dfrac{4^2}{4+8}=\dfrac{4}{3}\)

\(\Rightarrow A\ge\dfrac{4}{3}\Rightarrow A_{min}=\dfrac{4}{3}\) khi \(\dfrac{a}{a+4}=\dfrac{b}{b+4}\)

\(\Rightarrow ab+4a=ab+4b\Rightarrow a=b=2\)

Bình luận (0)
NL
30 tháng 7 2021 lúc 20:07

\(A=\dfrac{a^2}{a+4}+\dfrac{b^2}{b+4}\ge\dfrac{\left(a+b\right)^2}{a+b+8}=\dfrac{4^2}{4+8}=\dfrac{4}{3}\)

\(A_{min}=\dfrac{4}{3}\) khi \(a=b=2\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TM
Xem chi tiết
DH
Xem chi tiết
HP
Xem chi tiết
HN
Xem chi tiết
NT
Xem chi tiết
DL
Xem chi tiết