\(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}=\dfrac{a^2+b^2+2}{a^2b^2+a^2+b^2+1}=1-\dfrac{a^2b^2-1}{a^2b^2+a^2+b^2+1}\ge1-\dfrac{a^2b^2-1}{a^2b^2+2ab+1}=\dfrac{2}{ab+1}\)
Dấu "=" xảy ra khi \(a=b\) hoặc \(ab=1\)
\(< =>VT< =>\dfrac{a^2+b^2+2}{\left(1+a^2\right)\left(1+b^2\right)}=\dfrac{a^2+b^2+2}{a^2+a^2b^2+b^2+1}\)
\(VT\ge VP\)(giả thiết)
\(< =>\dfrac{a^2+b^2+2}{a^2+a^2b^2+b^2+1}\ge\dfrac{2}{1+ab}\)
\(< =>a^2+b^2+2+a^3b+ab^3+2ab-2a^2-2b^2-2a^2b^2-2\ge0\)
\(< =>\left(a-b^{ }\right)^2\left(ab-1\right)\ge0\)(luôn đúng với mọi a,b là các số thực dương thỏa mãn \(ab\ge1\))
\(\)