NN

Cho a^3 + b^3 + 1 = 3ab. Tính A = (1 + a/b) . (1 + b) . (1 + 1/a)

NT
5 tháng 7 2022 lúc 21:00

\(a^3+b^3+1=3ab\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)-3ab+1=0\)

\(\Leftrightarrow\left(a+b\right)^3+1-3ab\left(a+b+1\right)=0\)

\(\Leftrightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1\right)-3ab\left(a+b+1\right)=0\)

\(\Leftrightarrow\left(a+b+1\right)\left(a^2+b^2+1-ab-a-b\right)=0\)

=>a+b+1=0

=>a+b=-1

\(A=\left(1+\dfrac{a}{b}\right)\left(1+b\right)\left(1+\dfrac{1}{a}\right)\)

\(=\dfrac{b+a}{b}\cdot\left(b+1\right)\cdot\dfrac{a+1}{a}\)

\(=\dfrac{-1}{b}\cdot\left(-a\right)\cdot\dfrac{-b}{a}\)

\(=-1\)

Bình luận (1)
TH
5 tháng 7 2022 lúc 21:08

\(a^3+b^3+1=3ab\)

\(\Leftrightarrow a^3+b^3+1-3ab=0\)

\(\Leftrightarrow\left(a+b\right)^3+1-3ab-3ab\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b+1\right)\left[\left(a+b\right)^2-\left(a+b\right)+1\right]-3ab\left(a+b+1\right)=0\)

\(\Leftrightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1-3ab\right)=0\)

\(\Leftrightarrow\left(a+b+1\right)\left(a^2+b^2+1-a-b-ab\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+1=0\\a^2+b^2+1-a-b-ab=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=-1\\\dfrac{1}{2}\left(a-b\right)^2+\dfrac{1}{2}\left(a-1\right)^2+\dfrac{1}{2}\left(b-1\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=-1\\a=b=1\end{matrix}\right.\)

*\(a+b=-1\Rightarrow A=\left(1+\dfrac{a}{b}\right)\left(1+b\right)\left(1+\dfrac{1}{a}\right)=\dfrac{\left(a+b\right)\left(b+1\right)\left(a+1\right)}{ab}=\dfrac{-1.\left(b-a-b\right)\left(a-a-b\right)}{ab}=\dfrac{-1.\left(-a\right).\left(-b\right)}{ab}=-1\)

\(a=b=1\Rightarrow A=\left(1+\dfrac{a}{b}\right)\left(1+b\right)\left(1+\dfrac{1}{a}\right)=\left(1+\dfrac{1}{1}\right)\left(1+1\right)\left(1+\dfrac{1}{1}\right)=8\)

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
VH
Xem chi tiết
MC
Xem chi tiết
PN
Xem chi tiết
CA
Xem chi tiết
NM
Xem chi tiết
AA
Xem chi tiết
NL
Xem chi tiết
LN
Xem chi tiết
HA
Xem chi tiết