Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho các số a, b, c thỏa mãn a2+b2=c2+d2=2022 và ad+bc=0. Tính giá trị của biểu thức a3b3+c3d3
Cho a, b, c, d thỏa mãn a + b + c + d = 0; ab + ac + bc = 1. Rút gọn biểu thức P = 3(ab − cd)(bc − ad)(ca − bd) (a 2 + 1)(b 2 + 1)(c 2 + 1) ?
A. -1
B. 1
C. 3
D. -3
Chứng minh rằng: a2 + b2 + c2 + d2 >= ab+ac+ad
Chứng minh rằng: a2 + b2 + c2 + d2 (>= lớn hơn hoặc bằng) ab+ac+ad
Chứng minh rằng: ( a 2 + b 2 )( c 2 + d 2 ) = a c + b d 2 + a d - b c 2
Chứng minh các hằng đẳng thức sau:
a) (a2+b2)(c2+d2)=(ac+bd)2+(ad-bc)2
b) (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)
Cho abc ≠ 0; a + b = c. Tính giá trị của biểu thức B = (a 2 + b 2 − c 2 )(b 2 + c 2 − a 2 )(c 2 + a 2 − b 2 ) 8a 2 b 2 c 2
A. -1
B. 1
C. 2
D. -2
cho ba so a,b,c khac 0 thoa man ab+bc +ac = 0 .tinh B=bc/a2 + ca/b2 + ab/c2
Cho a + b + c = 0. Tính C = a b a 2 + b 2 - c 2 + b c b 2 + c 2 - a 2 + c a c 2 + a 2 - b 2
Cho a+b+c=9 và a2+b2+c2=53. tính ab+bc+ac