`#3107.101107`
\(A = 1 + 3 + 3^2 + 3^3 + ... + 3^{98} + 3^{99}\)
\(A = (1 + 3) + (3^2 + 3^3) + ... + (3^{98} + 3^{99})\)
\(A = (1 + 3) + 3^2(1 + 3) + ... + 3^{98}(1 + 3)\)
\(A = (1 + 3)(1 + 3^2 + ... + 3^{98})\)
\(A = 4(1 + 3^2 + ... + 3^{98})\)
Vì \(4(1 + 3^2 + ... + 3^{98}) \) \(\vdots\) \(4\)
`\Rightarrow A \vdots 4`
Vậy, `A \vdots 4` (đpcm).
A = 1 + 3 + 32 + 33 + ... + 398 + 399
A = (1 + 3) + (32 + 33) + ... + (398 + 399)
A = 1. (1 + 3) + 32. (1 + 3) + ... + 398. (1 + 3)
A = 1.4 + 32.4 + ... + 398.4
A = 4. (1 + 32 + ... + 398)
⇒ A ⋮ 4