Bài 8: Rút gọn biểu thức chứa căn bậc hai

PB

cho A = \(\left(\frac{4\sqrt{x}}{\sqrt{x}+2}-\frac{8x}{x-4}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\) đk x > 0, x khác 4

a, rút gọn A

b, tìm x đề A = -1

VP
26 tháng 11 2019 lúc 20:10

a.

\(A=\left[\frac{4\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x-2}\right)}\right]:\left[\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right]\)

\(=\frac{4x-8\sqrt{x}-8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\frac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\frac{-4\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{-\sqrt{x}+3}\)

\(=\frac{-4\sqrt{x}.\sqrt{x}}{-\sqrt{x}+3}=\frac{4x}{\sqrt{x}-3}\)

b.

\(A=-1\Leftrightarrow\frac{4x}{\sqrt{x}-3}=-1\)

\(\Leftrightarrow4x=-\sqrt{x}+3\)

\(\Leftrightarrow4x+\sqrt{x}-3=0\)

\(\Leftrightarrow\left(x+1\right)\left(4x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(l\right)\\x=\frac{3}{4}\end{matrix}\right.\)

Vậy \(A=-1\Leftrightarrow x=\frac{3}{4}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TT
Xem chi tiết
KB
Xem chi tiết
NB
Xem chi tiết
TN
Xem chi tiết
TM
Xem chi tiết
HA
Xem chi tiết
XL
Xem chi tiết
KB
Xem chi tiết
TT
Xem chi tiết