CK

Cho A là một điểm nằm ngoài đường tròn \(\left(O;R\right)\). Qua A vẽ hai tiếp tuyến AB, AC \((\)B, C là tiếp điểm\()\). H là giao điểm của AO và BC. Kẻ đường kính BD; AD cắt \(\left(O\right)\) tại E.

a. Chứng minh: OA \(\perp\) BC và CD // OA.

b. Chứng minh: AH.AO \(=\) AE.AD và ∠AHE \(=\) ∠ADO.

c. Cho OB = 2cm, OA = 4 cm. Chứng minh: △ABC là tam giác đều và tính diện tích △ABC

NT
10 tháng 12 2023 lúc 14:27

a: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại H và H là trung điểm của BC

Xét (O) có

ΔBCD nội tiếp

BD là đường kính

Do đó: ΔBCD vuông tại C

=>BC\(\perp\)CD tại C

Ta có: BC\(\perp\)CD

OA\(\perp\)BC

Do đó: OA//CD

b: Xét (O) có

ΔBED nội tiếp

BD là đường kính

Do đó: ΔBED vuông tại E

=>BE\(\perp\)ED tại E

=>BE\(\perp\)AD tại E

Xét ΔDBA vuông tại B có BE là đường cao

nên \(AE\cdot AD=AB^2\left(3\right)\)

Xét ΔABO vuông tại B có BH là đường cao

nên \(AH\cdot AO=AB^2\left(4\right)\)

Từ (3) và (4) suy ra \(AE\cdot AD=AH\cdot AO\)

=>\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)

Xét ΔAEH và ΔAOD có

\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)

\(\widehat{EAH}\) chung

Do đó: ΔAEH đồng dạng với ΔAOD

=>\(\widehat{AHE}=\widehat{ADO}\)

c: Xét ΔOBA vuông tại B có \(sinBAO=\dfrac{OB}{OA}=\dfrac{1}{2}\)

nên \(\widehat{BAO}=30^0\)

Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AO là phân giác của góc BAC

=>\(\widehat{BAC}=2\cdot\widehat{BAO}=60^0\)

Xét ΔOBA vuông tại B có \(BO^2+BA^2=OA^2\)

=>\(BA^2+2^2=4^2\)

=>\(BA^2=12\)

=>\(BA=2\sqrt{3}\left(cm\right)\)

Xét ΔBAC có AB=AC và \(\widehat{BAC}=60^0\)

nên ΔBAC đều

=>\(S_{ABC}=\left(2\sqrt{3}\right)^2\cdot\dfrac{\sqrt{3}}{4}=12\cdot\dfrac{\sqrt{3}}{4}=3\sqrt{3}\left(cm^2\right)\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
BH
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
YF
Xem chi tiết
LD
Xem chi tiết
H24
Xem chi tiết