NT

cho A= \(\frac{x+y-2\sqrt{xy}}{x-y}\)

a) CMR A=\(\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\) b) tính a khi x= 3+\(2\sqrt{2}\); y=3-2\(\sqrt{2}\)

TL
26 tháng 10 2016 lúc 22:16

a) \(A=\frac{x+y-2\sqrt{xy}}{x-y}\left(ĐK:xy\ge0;x\ne y\right)\)

\(=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}=\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)

=>đpcm

b) Có: \(x=3+2\sqrt{2}=\left(\sqrt{2}+1\right)^2\)

=>\(\sqrt{x}=\sqrt{2}+1\)

\(y=3-2\sqrt{2}=\left(\sqrt{2}-1\right)^2\)

=>\(\sqrt{y}=\left|\sqrt{2}-1\right|=\sqrt{2}-1\)

Nên: \(A=\frac{\sqrt{2}+1-\sqrt{2}+1}{\sqrt{2}+1+\sqrt{2}-1}=\frac{2}{2\sqrt{2}}=\frac{1}{\sqrt{2}}\)

Bình luận (0)

Các câu hỏi tương tự
VH
Xem chi tiết
VH
Xem chi tiết
HA
Xem chi tiết
MH
Xem chi tiết
QB
Xem chi tiết
QD
Xem chi tiết
MH
Xem chi tiết
LT
Xem chi tiết
TH
Xem chi tiết