Violympic toán 9

TT

Cho A = \(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{48}-\frac{1}{49}\)

Chứng minh : \(\frac{1}{2}< A< \frac{2}{5}\)

AH
15 tháng 3 2019 lúc 18:36

Lời giải:
\(A=\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{48}\right)-\left(\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)\)

\(=2\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{48}\right)-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+..+\frac{1}{24}-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}\right)\)

\(=1-\left(\frac{1}{25}+\frac{1}{26}+...+\frac{1}{49}\right)\)

Chứng minh vế đầu:

Ta thấy:

\(\frac{1}{25}+\frac{1}{26}+...+\frac{1}{49}> \frac{1}{49}+\frac{1}{49}+...+\frac{1}{49}=\frac{25}{49}>\frac{25}{50}=\frac{1}{2}\)

\(\Rightarrow A=1-\left(\frac{1}{25}+\frac{1}{26}+...+\frac{1}{49}\right)< 1-\frac{1}{2}=\frac{1}{2}\) (đpcm)

-------------------------

Vế sau sai, tính cụ thể thì $A< \frac{2}{5}$

Bình luận (0)

Các câu hỏi tương tự
KM
Xem chi tiết
TT
Xem chi tiết
HA
Xem chi tiết
BB
Xem chi tiết
NL
Xem chi tiết
NT
Xem chi tiết
VH
Xem chi tiết
HT
Xem chi tiết
NT
Xem chi tiết