TM

cho a b là các số thực thỏa mãn\(2a^2\)\(\dfrac{\text{1}}{\text{a^2}}\)+\(\dfrac{\text{b^2}}{\text{4}}\)=4

tìm GTNN của biểu thức M=ab

NL
15 tháng 2 2022 lúc 22:35

\(4=2a^2+\dfrac{1}{a^2}+\dfrac{b^2}{4}=\left(a^2+\dfrac{1}{a^2}-2\right)+\left(a^2+\dfrac{b^2}{4}+ab\right)-ab+2\)

\(\Rightarrow4=\left(a-\dfrac{1}{a}\right)^2+\left(a+\dfrac{b}{2}\right)^2-ab+2\)

\(\Rightarrow ab=\left(a-\dfrac{1}{a}\right)^2+\left(a+\dfrac{b}{2}\right)^2-2\ge-2\)

\(M_{min}=-2\) khi \(\left\{{}\begin{matrix}a-\dfrac{1}{a}=0\\a+\dfrac{b}{2}=0\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(1;-2\right);\left(-1;2\right)\)

Bình luận (0)

Các câu hỏi tương tự
TM
Xem chi tiết
TM
Xem chi tiết
TM
Xem chi tiết
H24
Xem chi tiết
TM
Xem chi tiết
PL
Xem chi tiết
GV
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết