cho a, b, c là số dương thỏa mãn a+b+c=1
CMR:
a2/b+b2/c+c2/a>=3(a2+b2+c2)
Mình cần gấp ạ !!
a, cho a=+b+c =1; a,b,c dương
tìm GTNN: A= a/b2+1 + b/c2+1 + c/a2+1
b, cho a,b,c dương có tổng =2
tìm GTNN; B= a/ab+2c + b/bc+2a + c/ca+2b
c, cho a,b,c dương và a+b+c<1
tìm GTNN: C= 1/a2+2bc + 1/ b2+2ac + 1/c2+2ab
cho a,b,c là độ dài 3 cạnh tam giác.
a)a2/b2+b2/a2≥ a/b+b/a
b)a2/b+b2/a+c2/a≥ a+b+c
c)a2/(b+c)+b2/(a+c)+c2/(a+b)≥ (a+b+c)/2
cho các số dương a b c khác 1 thỏa mãn abc<1 cmr a2 + b2 +c2 -2(ab+bc+ca) > -3
CMR :
a2 + b2 + c2 < 2( ab + bc + ca)
với mọi số thực a,b,c
với a,b,c là các số thực dương thỏa mãn a2=2(b2+c2), tìm giá trị nhỏ nhất của biểu thức
P= \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
{giải giúp mình với mai tớ kiểm tra rồi}
cho a,b,c là độ dài 3 cạnh của tam giác , chứng minh :
a3+b3+c3+2abc < a(b2+c2)+b(a2+c2)+c(a2+b2) < a3+b3+c3+3abc
mình cần gấp lắm , mn giúp mình với
Cho a2+b2+c2=ab+bc+ca.Chứng minh a=b=c
chứng minh: a2+b2+c2\(\ge\)ab+bc+ca với mọi a,b,c