TM

Cho a, b, c là các số nguyên dương. Chứng minh rằng:  M=a/a+b + b/b+c + c/c+a không là số nguyên

NP
24 tháng 11 2015 lúc 22:29

ta cần chứng minh nó lớn hơn 1 và nhỏ hơn 2

Do a;b;c và d là các số nguyên dương => 
a + b + c < a + b + c + d 
a + b + d < a + b + c + d 
a + c + d < a + b + c + d 
b + c + d < a + b + c + d 
=> a/(a + b + c) > a/(a + b + c + d) (1) 
b/(a + b + d) > b/(a + b + c + d) (2) 
c/(b + c + d) > c/(a + b + c + d) (3) 
d/(a + c + d) > d/(a + b + c + d) (4) 
Từ (1);(2);(3) và (4) 
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > a/(a + b + c + d) + b/(a + b + c + d) + c/(a + b + c + d) + d/(a + b + c + d) 
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > (a + b + c + d)/(a + b + c + d) 
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > 1 
=> B > 1 (*) 

Ta có: (a + b + c)(a + d) - a(a + b + c + d) 
= a² + ad + ab + bd + ac + cd - (a² + ab + ac + ad) 
= a² + ad + ab + bd + ac + cd - a² - ab - ac - ad 
= bd + cd 
Do a;b;c và d là số nguyên dương 
=> bd + cd > 0 
=> (a + b + c)(a + d) - a(a + b + c + d) > 0 
=> (a + b + c)(a + d) > a(a + b + c + d) 
=> (a + d)/(a + b + c + d) > a/(a + b + c) (5) 
Chứng minh tương tự ta được: 
(b + c)/(a + b + c + d) > b/(a + b + d) (6) 
(a + c)/(a + b + c + d) > c/(b + c + d) (7) 
(b + d)/(a + b + c + d) > d/(a + c + d) (8) 
Cộng vế với vế của (5);(6);(7) và (8) ta được: 
(a + d)/(a + b + c + d) + (b + c)/(a + b + c + d) + (a + c)/(a + b + c + d) + (b + d)/(a + b + c + d) > a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) 
=> (a + d + b + c + a + c + b + d)/(a + b + c + d) > B 
=> 2(a + b + c + d)/(a + b + c + d) > B 
=> 2 > B (*)(*) 
Từ (*) và (*)(*) 
=> 1 < B < 2 
=> B không phải là số nguyên

Bình luận (0)
LK
13 tháng 4 2016 lúc 20:12

Ta có: a/a+b <a/a+b+c    (1)

           b/b+c <b/a+b+c     (2) 

           c/c+a <c/a+b+c      (3)

Từ (1),(2),(3)  =>    a/a+b    +   b/b+c   +    c/c+a    >     a/a+b+c  +   b/a+b+c   +    c/a+b+c

                                                                                       = a+b+c/a+b+c

                                                                                       =1

VẬY : M>1

Ta có :

              a/a+b    <   a+c/a+b+c     (1)

              b/b+c    <   b+a/a+b+c     (2)

              c/c+a     <   c+b/a+b+c     (3)

Từ (1),(2),(3) =>  a/a+b    +   b/b+c   +    c/c+a    <     a+c/a+b+c    +      b+a/a+b+c      +    c+a/a+b+c 

                                                                                   =     2.(a+b+c)/a+b+c

                                                                                   =     2

=>          1<M<2          

=>          M không phải là số nguyên

Bình luận (0)
DT
18 tháng 12 2017 lúc 6:15
ta có công thức.Nếu a,b,c là các số nguyên dương thì a/ba/a+b
Bình luận (0)
NT
21 tháng 12 2017 lúc 21:02

Cần phải chứng minh 1<M<2 để làm được bài này

Bình luận (0)
TD
30 tháng 3 2018 lúc 21:02

LE BAO KHANH LAM DUNG RUI! ^-^

Bình luận (0)
DD
11 tháng 2 2020 lúc 15:41

bài của lê bảo khanh có chỗ làm sai nhé

Bình luận (0)
 Khách vãng lai đã xóa

Lê Bảo Khanh sai ngay ở dòng đầu tiên ý các bạn à

Bình luận (0)
 Khách vãng lai đã xóa
H24
17 tháng 2 2020 lúc 16:31

sai hết

Bình luận (0)
 Khách vãng lai đã xóa
VN
19 tháng 12 2021 lúc 15:52
Bài của phúc thì sao
Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
LT
Xem chi tiết
MN
Xem chi tiết
TV
Xem chi tiết
LD
Xem chi tiết
TD
Xem chi tiết
LM
Xem chi tiết
H24
Xem chi tiết
LS
Xem chi tiết
MD
Xem chi tiết