cho các số nguyên dương a,b,c thỏa mãn \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}\) giá trị của biểu thức T=\(\left(10+\frac{b}{a}\right)\left(4+\frac{2c}{b}\right)\left(2017+\frac{3a}{c}\right)\)
cho a,b,c>0 thỏa mãn a+b+c=2016
Tìm GTNN P=\(\frac{2a+3b+3c+1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2c-1}{2017+c}\)
Cho a,b,c>0 thỏa mãn a+b+c=2016
Tìm GTNN P=\(\frac{2a+3b+3c-1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2c+1}{2017+c}\)
Cho a+b+c = 1 và 3a+2b>c, 3b+2c>a, 3c+2a>b. Chứng minh: 1/(3a+2b-c) + 1/(3b+2c-a) + 1/(3c+2a-b) >hoặc = 9/4
Cho a;b;c là các số dương thay đổi thỏa mãn \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=2017\)
TÍNH \(MaxP=\frac{1}{2a+3b+3c}+\frac{1}{3a+2b+3c}+\frac{1}{3a+3b+2c}\)
Cho 3 số thực a,b,c thỏa mãn 27(a+b+c)3=(3a+b-c)3+(3b+c-a)3(3c+a-b)3+24
Tính (a+2b)(b+2c)(c+2a)
1) Cho (a-b)^2+(b-c)^2+(c-a)^2=(a+b-2c)^2+(b+c-2a)^2+(c+a-2b)^2.C/m:(a-b)^2017+(b-c)^2018+(c-a)^2016
2)Tìm GT của x,y,z biết x+y+z=6 và x^2+y^2+z^2=12
cho a,b,c khác 0 sao cho a^3b^3+b^3c^3+c^3a^3=2a^2b^2c^2 . Tính M=(1+a/b)(1+b/c)(1+c/a)
toàn bộ dùng bất đẳng thức svac-xơ hoặc bunhiacopski
bài 1: cho x,y,z>0. CMR:
a,1/x+1/y>=4/x+y
b,1/x+1/y+1/z>=9/x+y+z
bài 2: cho a,b,c>0. CMR:
a,a^2/(b+c)+b^2/(c+a)+c^2/(a+b)>=(a+b+c)/2
b, a^2/(2b+5c)+b^2/(2c+5a)+c^2/(2a+5b)>=(a+b+c)/7
bài 3: cho a,b,c>0. CMR a/(b+c)+b/(c+a)+c/(b+a)>=3/2
bài 4: cho a,b,c>0. CMR:
1/(b+2c)+b/(c+2a)+c/(a+2b)>=1
bài 5: cho a+b+c=1. Tìm min
a, P=1/a+4/b+9/c
b, Q+a^2/(b+3c)+b^2/(c+3a)+c^2/(a+3b)
bài 6: cho 3x^2+5y^2=3/79
tìm max, min A=x+4y
bài 7: tìm min P,Q,R
a, P=1/x+1/x;x>0
b, Q=x+1/x;x>=3
c, R=1/x+4/(1-x);0<x<1
bài 8: cho a,b,c là 3 cạnh một tam giác. CMR
a, a/(b+c-a)+b/(c+a-b)+c/(a+b-c)>=3
b, tìm min P
P=a/(b+c-a)+4b/(c+a-b)+9c/(a+b-c)