HM

Cho a, b: ab\(\ge\)1. Chứng minh:

\(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\ge\dfrac{2}{1+ab}\)

AH
13 tháng 3 2022 lúc 0:19

Lời giải:
BĐT \(\Leftrightarrow \frac{a^2+b^2+2}{(a^2+1)(b^2+1)}\geq \frac{2}{ab+1}\)

$\Leftrightarrow (a^2+b^2+2)(ab+1)\geq 2(a^2b^2+a^2+b^2+1)$

$\Leftrightarrow a^3b+a^2+ab^3+b^2+2ab+2\geq 2a^2b^2+2a^2+2b^2+2$

$\Leftrightarrow a^3b+ab^3+2ab\geq 2a^2b^2+a^2+b^2$

$\Leftrightarrow ab(a^2+b^2-2ab)-(a^2+b^2-2ab)\geq 0$

$\Leftrightarrow ab(a-b)^2-(a-b)^2\geq 0$

$\Leftrightarrow (a-b)^2(ab-1)\geq 0$

Điều này luôn đúng với mọi $ab\geq 1$ 

Do đó ta có đpcm 

Dấu "=" xảy ra khi $a=b$ hoặc $ab=1$

Bình luận (0)

Các câu hỏi tương tự
DH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
DH
Xem chi tiết
NA
Xem chi tiết
HT
Xem chi tiết
LL
Xem chi tiết
MA
Xem chi tiết