Bài 1: Căn bậc hai

PA

Cho a, b > 0 và 0 khác b với A = \(\dfrac{a+b}{2}\); B=\(\sqrt{ab}\)

Chứng minh B < \(\dfrac{\left(a-b\right)^2}{8\left(A-B\right)}< A\)

AH
4 tháng 7 2018 lúc 17:33

Lời giải:

Ta có: \(A-B=\frac{a+b}{2}-\sqrt{ab}=\frac{a+b-2\sqrt{ab}}{2}=\frac{(\sqrt{a}-\sqrt{b})^2}{2}\)

Khi đó:
\(\frac{(a-b)^2}{8(A-B)}=\frac{(a-b)^2}{4(\sqrt{a}-\sqrt{b})^2}=\frac{(\sqrt{a}+\sqrt{b})^2}{4}\)

Ta cần cm: \(B< \frac{(\sqrt{a}+\sqrt{b})^2}{4}< A\)

Thật vậy:

\(B-\frac{(\sqrt{a}+\sqrt{b})^2}{4}=\frac{4\sqrt{ab}-(\sqrt{a}+\sqrt{b})^2}{4}=\frac{-(\sqrt{a}-\sqrt{b})^2}{4}< 0, \forall a\neq b\)

\(\Rightarrow B< \frac{(\sqrt{a}+\sqrt{b})^2}{4}\)

\(A-\frac{(\sqrt{a}+\sqrt{b})^2}{4}=\frac{a+b}{2}-\frac{(\sqrt{a}+\sqrt{b})^2}{4}=\frac{a+b-2\sqrt{ab}}{4}=\frac{(\sqrt{a}-\sqrt{b})^2}{4}>0,\forall a\neq b\)

\(\Rightarrow A> \frac{(\sqrt{a}+\sqrt{b})^2}{4}\)

Ta có đpcm.

Bình luận (0)