Violympic toán 9

NT

Cho a > 0, b > 0 và \(a+b\le1\). Tìm giá trị nhỏ nhất của biểu thức: \(S=\frac{a}{1+b}+\frac{b}{1+a}+\frac{1}{a+b}\)

NL
13 tháng 4 2019 lúc 23:59

\(S=\frac{a^2}{a+ab}+\frac{b^2}{b+ab}+\frac{1}{a+b}\ge\frac{\left(a+b\right)^2}{a+b+2ab}+\frac{1}{a+b}\ge\frac{\left(a+b\right)^2}{a+b+\frac{\left(a+b\right)^2}{2}}+\frac{1}{a+b}\ge\frac{1}{1+\frac{1}{2}}+1=\frac{5}{3}\)

\(\Rightarrow S_{min}=\frac{5}{3}\) khi \(a=b=\frac{1}{2}\)

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
NC
Xem chi tiết
MT
Xem chi tiết
H24
Xem chi tiết
TO
Xem chi tiết
VF
Xem chi tiết
AR
Xem chi tiết
PA
Xem chi tiết
AR
Xem chi tiết