OO

cho 6 số nguyên dương a < b < c < d < m < n . CMR : a+c+m/a+b+c+d+m+n < 1/2

TD
1 tháng 8 2017 lúc 21:41

Ta có :

a < b \(\Rightarrow\)2a < a + b \(\Rightarrow\)\(\frac{a}{a+b}< \frac{1}{2}\)

c < d \(\Rightarrow\)2c < c + d \(\Rightarrow\)\(\frac{c}{c+d}< \frac{1}{2}\)

m < n \(\Rightarrow\)2m < m + n \(\Rightarrow\)\(\frac{m}{m+n}< \frac{1}{2}\)

\(\Rightarrow\)2a + 2c + 2m < ( a + b ) + ( c + d ) + ( m + n ) 

\(\Rightarrow\)2 . (a  + c + nm ) < a + b + c + d + m + n

\(\Rightarrow\)\(\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)

Bình luận (0)
GJ
1 tháng 8 2017 lúc 21:42

\(a< b\Rightarrow2a< a+b\)

\(c< d\Rightarrow2c< c+d\)

\(m< n\Rightarrow2m< m+n\)

\(\Rightarrow2a+2c+2m< a+b+c+d+m+n\)

\(\Rightarrow2\left(a+c+m\right)< a+b+c+d+m+n\)

\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\left(\text{đ}pcm\right)\)

Bình luận (0)
VV
1 tháng 8 2017 lúc 21:45

Ta thấy:
\(\hept{\begin{cases}a< b\\c< d\\m< n\end{cases}\Rightarrow a+c+m< b+d+n}\)
\(\Rightarrow\left(a+c+m\right)+\left(a+c+m\right)< \left(a+c+m\right)+\left(b+d+n\right)\)
\(\Rightarrow2\left(a+c+m\right)< a+b+c+d+m+n\)
hay \(a+b+c+d+m+n>2\left(a+c+m\right)\)
\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{a+c+m}{2\left(a+c+m\right)}\) ( do các tử và các mẫu đều dương )
\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\) ( đpcm )

Bình luận (0)
ST
14 tháng 9 2024 lúc 8:14

tui ko bt lm

 

Bình luận (0)
ST
14 tháng 9 2024 lúc 8:14

tui lớp 6

 

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết
CI
Xem chi tiết
TM
Xem chi tiết
ND
Xem chi tiết
HM
Xem chi tiết
TL
Xem chi tiết
TL
Xem chi tiết