LA

Cho 4ABC có các đường cao BE và CF cắt nhau tại H ( E ∈ AC , F ∈ AB) và M là trung điểm của BC. Đường thẳng qua H vuông góc với HM cắt các cạnh AB ,AC lần lượt tại I và K . Đường thẳng qua K song song với AB cắt BE tại D . a) Chứng minh M thuộc đường trung trực của EF b) Chứng minh IK vuông góc với DC c) Chứng minh HI = HK .

NT
17 tháng 7 2021 lúc 22:14

a) Ta có: ΔFBC vuông tại F(gt)

mà FM là đường trung tuyến ứng với cạnh huyền BC(gt)

nên \(FM=\dfrac{BC}{2}\)(1)

Ta có: ΔEBC vuông tại E(gt)

mà EM là đường trung tuyến ứng với cạnh huyền BC(gt)

nên \(EM=\dfrac{BC}{2}\)(2)

Từ (1) và (2) suy ra ME=MF

hay M nằm trên đường trung trực của EF(đpcm)

Bình luận (0)

Các câu hỏi tương tự
HT
Xem chi tiết
MD
Xem chi tiết
BH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
QN
Xem chi tiết
CD
Xem chi tiết
PH
Xem chi tiết
H24
Xem chi tiết