Cho 2 số dương a,b có tổng bằng 2 . Tính giá trị nhỏ nhất của biểu thức
\(\left(1-\frac{4}{a^2}\right)\left(1-\frac{4}{b^2}\right)\)
1) Cho pt \(5x^2-7x+1=0\)
a) C minh pt có 2 nghiệm phân biệt \(x_1,x_2\)
b) Tính giá trị biểu thức \(A=\left(x_1-\dfrac{7}{5}\right)x_1+\dfrac{1}{25x^2_2}+x^2_2\)
2) Cho pt \(x^2-4+1-2m=0\) (x là ẩn số)
a) tìm m để pt có nghiệm
b) tìm m để 2 nghiệm \(x_1,x_2\) của pt thỏa \(x^2_1+x^2_2=6\)
Cho phương trình \(x^2+\left(m-1\right)x-m^2-2=0\) (1) với m là tham số thực.
a) Chứng minh: phương trình (1) luôn có 2 nghiệm trái dấu \(x_1,x_2\) với mọi giá trị của m
b) Tìm m để biểu thức \(T=\left(\dfrac{x_1}{x_2}\right)^3+\left(\dfrac{x_2}{x_1}\right)^3\) đạt giá trị lớn nhất
Cho pt \(x^2+5x-3=0\) có 2 nghiệm \(x_1,x_2\).Không giải pt,hãy tính giá trị của các biểu thức sau:
a)\(\dfrac{1}{x_1}+\dfrac{1}{x_2}\)
b)\(\left(x_1\right)^2+\left(x_2\right)^2\)
Cho phương trình \(x^2-4x-6=0\). Không giải phương trình, tính giá trị của biểu thức sau (\(x_1,x_2\) là hai nghiệm của phương trình):
\(A=x^2_1+x^2_2;\)
\(B=\dfrac{1}{x_1}+\dfrac{1}{x_2}\)
\(C=x^3_1+x^3_2\)
\(D=\left|x_1-x_2\right|\)
1. Cho biểu thức P =\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right)\):\(\left(\dfrac{2}{x}-\dfrac{2-x}{x\sqrt{x}+x}\right)\)
a) Rút gọn biểu thức P
b) Tìm x để \(\sqrt{P}\) đạt giá trị nhỏ nhất, tìm GTNN đó
Cho PT: x2 - 2(m+1)x + 2m - 3 = 0
Tìm các giá trị của m để PT có 2 nghiệm phân biệt x1, x2 thỏa mãn biểu thức \(P=\left|\dfrac{x_1+x_2}{x_1-x_2}\right|\) đạt giá trị nhỏ nhất.
Tìm m nguyên dương để pht: \(x^2-2\left(m-1\right)x+2m-6=0\) có 2 nghiệm x1, x2 sao cho:\(A=\left(\dfrac{x_1}{x_2}\right)^2+\left(\dfrac{x_1}{x_2}\right)^2\) có giá trị nguyên
1.cho phương trình \(x^2+5x+m-2=0\) (m là tham số). Tìm các giá trị của m để phương trình có hai nghiệm phân biệt x1;x2 thỏa mãn hệ thức
\(\dfrac{1}{ \left( x_1-1\right)^2}+\dfrac{1}{\left(x_2-1\right)^2}=1\)