Lời giải:
a)
Vì \(\Delta=(m-1)^2+4(m^2+2)>0, \forall m\in\mathbb{R}\) nên pt luôn có hai nghiệm phân biệt với mọi $m$
Áp đụng định lý Viete cho pt bậc 2 ta có:
\(\left\{\begin{matrix} x_1+x_2=1-m\\ x_1x_2=-(m^2+2)\end{matrix}\right.(*)\)
Vì \(m^2\geq 0, \forall m\in\mathbb{R}\Rightarrow m^2+2>0\Rightarrow -(m^2+2)< 0\)
\(\Leftrightarrow x_1x_2< 0\).
Do đó pt luôn có hai nghiệm trái dấu (đpcm)
b)
Sử dụng hằng đẳng thức và $(*)$ để biến đổi:
\(T=\left(\frac{x_1}{x_2}\right)^3+\left(\frac{x_2}{x_1}\right)^3=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^3-3.\frac{x_1}{x_2}.\frac{x_2}{x_1}\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)\)
\(T=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^3-3\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)\)
Đặt \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=t\Rightarrow T=t^3-3t\)
Có: \(t=\frac{x_1^2+x_2^2}{x_1x_2}=\frac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}=\frac{(x_1+x_2)^2}{x_1x_2}-2=\frac{(1-m)^2}{-(m^2+3)}-2\)
Vì \((1-m)^2\geq 0; -(m^2+3)< 0\Rightarrow t=\frac{(1-m)^2}{-(m^2+3)}-2\leq 0-2=-2\)
Khi đó:
\(T=t^3-3t=t(t^2-4)+t=t(t-2)(t+2)+t\)
Vì \(t\leq -2\Rightarrow \left\{\begin{matrix} t(t-2)(t+2)\leq 0\\ t\leq -2\end{matrix}\right.\Rightarrow T\leq -2\)
Vậy \(T_{\max}=-2\). Dấu bằng xảy ra khi \(t=-2\Leftrightarrow \frac{(1-m)^2}{-(m^2+3)}-2=-2\Leftrightarrow m=1\)