\(A=\dfrac{2}{3}\left(a+\dfrac{4}{a}\right)+\dfrac{2}{3}\left(b+\dfrac{4}{b}\right)+\dfrac{2}{3}\left(c+\dfrac{25}{c}\right)+\dfrac{1}{3}\left(a+b+4c\right)\)
\(A\ge\dfrac{2}{3}.2\sqrt{\dfrac{4a}{a}}+\dfrac{2}{3}.2\sqrt{\dfrac{4b}{b}}+\dfrac{2}{3}.2\sqrt{\dfrac{25c}{c}}+\dfrac{1}{3}.24=...\)
Dấu "=" xảy ra tại \(\left(a;b;c\right)=\left(2;2;5\right)\)
Đúng 3
Bình luận (0)