§1. Bất đẳng thức

TF

Cho 3 số thực a, b, c thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\). Chứng minh rằng :

\(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}\le3\sqrt{3\left(a+b+c\right)}\)

H24
31 tháng 10 2019 lúc 19:57

Em nghĩ cần thêm đk a, b, c là các số thực dương

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\) thì x + y + z = 3; x > 0,y>0,z>0

BĐT \(\Leftrightarrow\sqrt{\frac{5}{x}+4}+\sqrt{\frac{5}{y}+4}+\sqrt{\frac{5}{z}+4}\le3\sqrt{3\left(\frac{xy+yz+zx}{xyz}\right)}\)

\(\Leftrightarrow\sqrt{5yz+4xyz}+\sqrt{5zx+4xyz}+\sqrt{5z+4xyz}\le3\sqrt{3\left(xy+yz+zx\right)}\)(*)

\(VT\le\sqrt{5\left(xy+yz+zx\right)+12xyz+2\Sigma_{cyc}\sqrt{\left(5yz+4xyz\right)\left(5zx+4xyz\right)}}\)

\(\le\sqrt{15\left(xy+yz+zx\right)+36xyz}\)(áp dụng BĐT AM-GM)

Chú ý rằng: \(xyz\le\frac{\left(xy+yz+zx\right)\left(x+y+z\right)}{9}\)

Từ đó \(VT\le\sqrt{15\left(xy+yz+zx\right)+4\left(xy+yz+zx\right)\left(x+y+z\right)}\)

\(=3\sqrt{3\left(xy+yz+zx\right)}=VP_{\text{(*)}}\)

Ta có đpcm.

Đẳng thức xảy ra khi a = b = c = 1

Is that true?

Bình luận (0)
 Khách vãng lai đã xóa
AH
31 tháng 10 2019 lúc 21:40

Lời giải:
Áp dụng BĐT Cauchy-Schwarz:

\(3=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{9}{a+b+c}\Rightarrow a+b+c\geq 3\)

Và:

\(\text{VT}^2=(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4})^2\)

\(\leq (5a+4+5b+4+5c+4)(1+1+1)\)

\(\Leftrightarrow \text{VT}^2\leq 15(a+b+c)+36\)

Mà $3\leq a+b+c$ (cmt)

$\Rightarrow \text{VT}^2\leq 15(a+b+c)+12(a+b+c)=27(a+b+c)$

$\Rightarrow \text{VT}\leq 3\sqrt{3(a+b+c)}$

Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c=1$

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TF
Xem chi tiết
PO
Xem chi tiết
NC
Xem chi tiết
PO
Xem chi tiết
LC
Xem chi tiết
TF
Xem chi tiết
TV
Xem chi tiết
LC
Xem chi tiết
BB
Xem chi tiết