Violympic toán 9

TT

Cho 3 số dương x, y, z thay đổi thoả mãn: \(\sqrt{\dfrac{xy}{z}}+\sqrt{\dfrac{xz}{y}}+\sqrt{\dfrac{yz}{x}}=3\). Tìm giá trị nhỏ nhất của biểu thức: \(P=\sqrt{x}+\sqrt{y}+\sqrt{z}+\dfrac{2016}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

PA
21 tháng 1 2018 lúc 10:55

Theo giả thiết \(\sqrt{\dfrac{yz}{x}}+\sqrt{\dfrac{xz}{y}}+\sqrt{\dfrac{xy}{z}}=3\)

\(\Rightarrow\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}+2x+2y+2z=9\)

Mặt khác, ta có bđt phụ: \(\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\ge x+y+z\)

\(\Rightarrow9\ge3\left(x+y+z\right)\)

\(\Leftrightarrow x+y+z\le3\)

Áp dụng bđt Cauchy Shwarz \(\Rightarrow\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\le3\left(x+y+z\right)\le9\)

\(\Rightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\le3\)

Ta có: \(M=\sqrt{x}+\sqrt{y}+\sqrt{z}+\dfrac{2016}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

\(=\sqrt{x}+\sqrt{y}+\sqrt{z}+\dfrac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\dfrac{2007}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

\(\ge2\times\sqrt{9}+\dfrac{2007}{3}=675\)

Dấu "=" xảy ra ⇔ x = y = z = 1

Bình luận (1)

Các câu hỏi tương tự
TB
Xem chi tiết
DL
Xem chi tiết
NM
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
NC
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
HC
Xem chi tiết