Câu này đã có người đăng rồi, bạn tìm lại sẽ thấy
Câu này đã có người đăng rồi, bạn tìm lại sẽ thấy
\(a,b,c>0\)thỏa mãn \(a+2b+3c=10\)
Chứng minh \(a+b+c+\frac{3}{4a}+\frac{9}{8b}+\frac{1}{c}\ge\frac{13}{2}\)
Cho các số thực dương a, b, c thỏa mãn abc=1. Chứng minh rằng
\(\sqrt{\frac{a}{3b+1}}+\sqrt{\frac{b}{3c+1}}+\sqrt{\frac{c}{3a+1}}\ge\frac{3}{2}\)
Cho 3 số dương a,b,c thỏa mãn:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=16\)
Chứng minh rằng:\(\frac{1}{3a+2b+c}+\frac{1}{3b+2c+a}+\frac{1}{3c+2a+b}\le\frac{8}{3}\)
#giúp mình nhé! Cảm ơn *cúi*
cho a;b;c là các số thực dương thỏa mãn abc=1.CMR:\(\frac{1}{2a^3+3a+2}+\frac{1}{2b^3+3b+2}+\frac{1}{2c^3+3c+2}\ge\frac{3}{7}\)
Cho 3 số thực dương a, b, c. Chứng minh rằng:
\(\frac{1}{a\sqrt{3a+2b}}+\frac{1}{b\sqrt{3b+2c}}+\frac{1}{c\sqrt{3c+2a}}\)\(\ge\frac{3}{\sqrt{5abc}}\)
cho a;b;c là các số thực dương thỏa mãn a+b+c=3.CMR:\(\sqrt{\frac{a}{3b^2+1}}+\sqrt{\frac{b}{3c^2+1}}+\sqrt{\frac{c}{3a^2+1}}\ge\frac{3}{2}\)
Cho a, b, c là số dương thỏa mãn a + b + c = 3. Chứng minh rằng:
\(\frac{\sqrt{3a+bc}}{a+\sqrt{3a+bc}}+\frac{\sqrt{3b+ac}}{a+\sqrt{3b+ac}}+\frac{\sqrt{3c+ab}}{a+\sqrt{3c+ab}}\ge2\)
Cho các số thực a, b, c > 0 thỏa mãn ab + bc + ca = 1.Chứng minh rằng:
\(\frac{a}{\left(3b+5c\right)^3}+\frac{b}{\left(3c+5a\right)^3}+\frac{c}{\left(3a+5b\right)^3}\ge\frac{9}{512}\)
Cho a,b,c là các số thực dương thỏa mãn a2 + b2 + c2 = 3abc
Chứng minh rằng : \(\frac{a}{b^2c^2}+\frac{b}{c^2a^2}+\frac{c}{a^2b^2}\ge\frac{9}{a+b+c}\)