Bài 2: Hệ hai phương trình bậc nhất hai ẩn. Luyện tập

H24

cho 3 số dương a, b, c thỏa mãn abc=1. CMR \(\dfrac{\sqrt{1+a^3+b^3}}{ab}+\dfrac{\sqrt{1+b^3+c^3}}{bc}+\dfrac{\sqrt{1+a^3+c^3}}{ac}\ge3\sqrt{3}\)

AH
30 tháng 11 2018 lúc 20:53

Lời giải:

Áp dụng BĐT AM-GM (Cô-si)

\(1+a^3+b^3\geq 3\sqrt[3]{a^3b^3}=3ab\)

\(\Rightarrow \frac{\sqrt{1+a^3+b^3}}{ab}\geq \frac{\sqrt{3ab}}{ab}=\frac{c\sqrt{3ab}}{abc}=c\sqrt{3ab}=\sqrt{c}.\sqrt{3abc}=\sqrt{3c}\)

Hoàn toàn tương tự:

\(\frac{\sqrt{1+b^3+c^3}}{bc}\geq \sqrt{3a}\)

\(\frac{\sqrt{1+a^3+c^3}}{ac}\geq \sqrt{3b}\)

Cộng theo vế những BĐT vừa thu được ta có:

\(\frac{\sqrt{a^3+b^3+1}}{ab}+\frac{\sqrt{b^3+c^3+1}}{bc}+\frac{\sqrt{c^3+a^3+1}}{ac}\geq \sqrt{3}(\sqrt{a}+\sqrt{b}+\sqrt{c})\)

\(\geq \sqrt{3}.3\sqrt[3]{\sqrt{a}.\sqrt{b}.\sqrt{c}}=\sqrt{3}.3\sqrt[6]{abc}=3\sqrt{3}\) (áp dụng BĐT Cô-si)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

Bình luận (1)

Các câu hỏi tương tự
NN
Xem chi tiết
NN
Xem chi tiết
MV
Xem chi tiết
HH
Xem chi tiết
OQ
Xem chi tiết
CD
Xem chi tiết
MM
Xem chi tiết
CA
Xem chi tiết
NN
Xem chi tiết