Để chứng minh rằng a^2 + b^2 + c^2 < 2 với điều kiện a + b + c = 0 và -1 < a <= b <= c < 1, chúng ta có thể sử dụng phương pháp giả định trái ngược (proof by contradiction).
Giả sử rằng a^2 + b^2 + c^2 >= 2, sau đó chúng ta sẽ chứng minh rằng điều kiện a + b + c = 0 không thể thỏa mãn.
Với a + b + c = 0, chúng ta có thể viết lại bằng cách sử dụng c = -(a + b):
a^2 + b^2 + (-a-b)^2 >= 2
Mở ngoặc và rút gọn:
a^2 + b^2 + a^2 + 2ab + b^2 >= 2
3a^2 + 2ab + 2b^2 >= 2
Chúng ta sẽ chứng minh rằng bất phương trình trên không thể đúng với điều kiện -1 < a <= b <= c < 1.
Với -1 < a <= b <= c < 1, ta có:
-1 < a <= b <= -a-b < 1
Thêm cả hai vế của bất phương trình này:
-1 < a+b <= 0 < 1
Điều này cho thấy a + b không thể bằng 1 hoặc -1.
Tiếp theo, chúng ta chứng minh rằng bất phương trình 3a^2 + 2ab + 2b^2 >= 2 không thể đúng với a + b không bằng 1 hoặc -1.
Ta có:
3a^2 + 2ab + 2b^2 >= 2
Với a + b không bằng 1 hoặc -1, ta có:
3a^2 + 2ab + 2b^2 > 3a^2 - a^2 + 2ab + b^2
= 2a^2 + 2ab + b^2
= (a + b)^2 + a^2
Vì (a + b)^2 >= 0 và a^2 >= 0, ta có:
(a + b)^2 + a^2 >= 0 + 0 = 0
Điều này cho thấy rằng bất phương trình không thể đúng.
Vì vậy, giả định ban đầu là sai và chúng ta kết luận rằng a^2 + b^2 + c^2 < 2 với điều kiện a + b + c = 0 và -1 < a <= b <= c < 1.