cho 3 số thực dương a b c thỏa mãn a + b + c = a\(^3\) + b\(3\) + c\(^3\)= 0. chứng minh rằng trong 3 số a,c,b có ít nhất có 1 số bằng 0
cho 3 số a,b,c thỏa mãn a>b>c>0 và a+b+c=12 chứng minh 1 trong 3 pt sau x^2+ax+b=0; x^2+bx+c=0; x^2+cx+a=0 có nghiệm
với a,b,c là các số thực thỏa mãn a^3+b^3+c^3=4abc và ab+2bc+3ca=0, chứng minh rằng a=b=c=0
Cho các số thực a,b,c>0 thỏa mãn: a+b+c=3 Chứng minh rằng:
N=\(\frac{3+a^2}{b+c}+\frac{3+b^2}{c+a}+\frac{3+c^2}{a+b}\ge6\)
cho các số thực a,b,c >0 thỏa mãn a+b+c=3 . chứng minh rằng N=\(\frac{3+a^2}{b+c}+\frac{3+b^2}{c+a}+\frac{3+c^2}{a+b}\ge6\)
cho 3 số a,b,c khác 0 thỏa mãn abc=1 và
\(\frac{a}{b^3}+\frac{b}{c^3}+\frac{c}{a^3}=\frac{b^3}{a}+\frac{c^3}{b}+\frac{a^3}{c}\)
Chứng minh rằng trong 3 số a,b,c luôn tồn tại một số là lập phương của 2 số còn lại
cho 3 số a b c thỏa mãn a+b+c=0 và -1<a<=b<=c<1. chúng minh a^2+b^2+c^2 < 2
cho a,b,c \(\in\) R và a,b,c>0 thỏa mãn a+b+c=3. Chứng minh:
N=\(\frac{3+a^2}{b+c}+\frac{3+b^2}{a+c}+\frac{3+c^2}{a+b}\ge6\)6
1) Cho a, b, c>0 và a+b+c=3. Chứng minh rằng: \(\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ac}\ge\frac{3}{2}\)
2) Cho a, b, c >0 thỏa mãn: ab+ac+bc+abc=4. Chứng minh rằng: \(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\le3\)