tam giác ABC có 3 cạnh a,b,c
a) a2+b2+c2< 2(ab+bc+ca)
b) abc\(\ge\)(a+b-c)(b+c-a)(c+a-b)
Cho các số thực a,b,c,d thỏa mãn: a2 + b2 + c2 + d2 = 1.
Tìm Min và Max của: P = ab + bc + ca + ad + bd + 3cd
cho a ≥ 3, b ≥ 4,c ≥ 2 tìm max P=\(\dfrac{ab\sqrt{c-2}+bc\sqrt{a-3}+ca\sqrt{b-4}}{abc}\)
1) tìm min \(P=\dfrac{2009x^2-6039x+6\sqrt{x^3-2x^2+2x-4}-8024}{x^2-3x-4}\)
2) cho các số thực dương a,b,c thỏa mãn a2+b2+c2=1
cm \(\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}+\sqrt{\dfrac{bc+2a^2}{1+bc-a^2}}+\sqrt{\dfrac{ca+2b^2}{1+ca-b^2}}\ge2+ab+bc+ca\)
cho a , b , c >0. Chứng minh các bất đẳng thức :
1, ab + bc + ca \(\ge\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
2, \(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\)
3, \(ab+\frac{a}{b}+\frac{b}{a}\ge a+b+1\)
4, \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\)
5, \(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Cho các số dương a,b,c . Tìm GTLN của: P=\(\dfrac{ab}{a^2+ab+bc}+\dfrac{bc}{b^2+bc+ca}+\dfrac{ca}{c^2+ca+ab}\)
ai giúp mik với ạ
cho số dương a,b,c. Tìm GTLN : \(\dfrac{ab}{a^2+ab+bc}+\dfrac{bc}{b^2+bc+ca}+\dfrac{ca}{c^2+ca+ab}\)
Cho a,b,c là độ dài 3 cạnh của một tam giác chứng minh :
ab + bc + ca <= a2 +b2 +c2<= 2(ab+bc+ca)
cho ba số thực a,b,c thay đổi .tìm MAX
\(3\sqrt[3]{\dfrac{c^2-3a^2}{6}}-2\sqrt{\dfrac{a^2+b^2+c^2-ab-bc-ca}{3}}\)